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1. INTRODUCTION

Coupled oscillators play an important role in different scientific disciplines, ranging from
biology, chemistry and physics to engineering. In recent years, considerable effort has been
devoted to the study of oscillatory and chaotic states of some non-linear coupled
oscillators [1–5]. Among these coupled systems, a particular class is that containing the
Duffing oscillator encountered in various electrical systems. Subjected to external
sinusoidal excitation, the Duffing oscillator leads to various phenomena: harmonic,
subharmonic and superharmonic oscillations, and chaotic behavior [1, 6, 7].

Considering the coupling between two Duffing oscillators or between the Duffing
oscillator and other types of oscillators, some interesting results have recently been
obtained. Kozlowski et al. [8] have analyzed various bifurcations of two coupled
periodically driven Duffing oscillators. They showed that the global pattern of
bifurcation curves in the parameter space consists of repeated subpatterns similar
to the superstructure observed for single, periodically driven, strictly dissipative
oscillators.

For the coupling between a Duffing oscillator and self-sustained oscillators, the problem
was considered in reference [2] by investigating the dynamics of a system consisting of a
Van der Pol oscillator coupled dissipatively and elastically to a Duffing oscillator. Using
the multiple time scales method, the oscillatory states were analyzed both in the resonant
and non-resonant cases. Chaos was also found using the Shilnikov theorem. This paper
considers the behavior of an electromechanical system consisting of a Duffing oscillator
coupled to a linear oscillator. The model is interesting since it is widely encountered in
electromechanical engineering as described in section 2.1.

Three major problems are considered in the paper. In section 2, the harmonic
oscillations and their stability are studied using, respectively, the method of harmonic
balance and the Floquet theory. Section 3 analyzes some bifurcation structures and the
transitions from regular behavior to chaos. The indicators used are the one-dimensional
Lyapunov exponent and the bifurcation diagrams. Finally, the canonical feedback
controller algorithm [9] is used to drive the electromechanical transducer from chaos to a
regular target trajectory. Section 4 is devoted to the conclusions.
0022-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.
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2. DESCRIPTION OF THE MODEL AND OSCILLATORY STATES

2.1. DESCRIPTION OF THE MODEL

The electromechanical device shown in Figure 1 is an electromechanical transducer. It is
composed of an electrical part (Duffing oscillator) coupled to a mechanical part governed
by the linear oscillator. The coupling between both parts is realized through the
electromagnetic force due to a permanent magnet. It creates a Laplace force in the
mechanical part and the Lenz electromotive voltage in the electrical part. The electrical
part of the system consists of a resistor R, an inductor L, a condenser C and a sinusoidal
voltage source eðt0Þ ¼ v0 cosOt0 (v0 and O being, respectively, the amplitude and
frequency, and t0 the time), all connected in series. In the present model, the voltage of
the condenser is a non-linear function of the instantaneous electrical charge q. It can be
written as follows:

Vc ¼
1

C0
q þ a3q3; ð1Þ

where C0 is the linear value of C and a3 is a non-linear coefficient depending on the type of
the capacitor in use. The mechanical part is composed of a mobile beam which can move
along the z

!
-axis on both sides. The rod T which has the similar motion is bound to a

mobile beam with a spring.
Using the electrical and mechanical laws, and taken into account the contributions of

the Laplace force and the Lenz electromotive voltage, it is found that the system is
described by the following set of differential equations:

L .qq þ R ’qq þ q

C0
þ a3q3 þ lB’zz ¼ v0 cosOt0;

m.zz þ l.zz þ kz � lB ’qq ¼ 0; ð2Þ

where l is the length of the domain of the interaction between B
!

and the two mobile rods
supporting the beam. The dot over a quantity denotes the time derivative. Now use the
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Figure 1. The electromechanical transducer.
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dimensionless variables

x ¼ q

Q0
; y ¼ z

l
; t ¼ wet0; ð3Þ

where Q0 is a reference charge of the condenser and

w2
e ¼ 1

LC0
; w2

m ¼ k

m
; g1 ¼

R

Lwe

;

b ¼ a3Q2
0

Lw2
e

; l1 ¼
l2B

LQ0we

; E0 ¼
v0

LQ0w2
e

;

w ¼ O
we

; g2 ¼
l

mwe

; w2 ¼
wm

we

; l2 ¼
BQ0

mwe

ð4Þ

Then the differential equations (2) reduce to the following set of non-dimensional
differential equations:

.xx þ g1 ’xx þ x þ bx3 þ l1 ’yy ¼E0 cos wt;

.yy þ g2 ’yy þ w2
2y � l2 ’xx ¼ 0: ð5Þ

The model represented by Figure 1 is widely encountered in various branches of
electromechanical engineering. In particular, in its linear version, it describes the well-
known electrodynamic loud-speaker [10]. In the case, the sinusoidal signal e(t) represents
an incomming pure message. Because of the recent advances in the theory of non-linear
phenomena, it is interesting to consider such an electro-dynamic system containing one or
various non-linear components or in the state where one or various of its component react
non-linearly. One such state occurs in the electrodynamic loudspeaker due to the non-
linear character of the diaphragm suspension system resulting in signal distorsion and
subharmonics generation [10]. Moreover, the model can serve as servo-command
mechanism which can be used for various applications. Here one would like to take
advantage of non-linear responses of the model in manufacturing processes.

2.2. FORCED HARMONIC OSCILLATORY STATES

Equations (5) are solved by using the harmonic balance method. For this purpose,
express x and y in the form

x ¼ a1 cos wt þ a2 sin wt;

y ¼ b1 cos wt þ b2 sin wt: ð6Þ
Set A2 ¼ a2

1 þ a2
2 and B2 ¼ b2

1 þ b2
2: Inserting equations (6) into equations (5) and equating

the cosine and sine terms separately, one obtains

1 � w2 þ 3
4bA2

� �
a1 þ g1wa2 þ l1wb2 ¼E0;

�wg1a1 þ 1 � w2 þ 3
4
bA2

� �
a2 � l1wb1 ¼ 0;

w2
2 � w2

� �
b1 þ g2wb2 � l2wa2 ¼ 0;

�wg2b1 þ w2
2 � w2

� �
b2 þ l2wa1 ¼ 0: ð7Þ

After some algebraic manipulations, one finds that the amplitudes A and B satisfy the
following equations:

9
16
b2A6 þ 3

2
bFA4 þ F2 þ G2

� �
A2 � E2

0 ¼ 0;

B ¼ l2wffiffiffiffi
D

p A; ð8Þ
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where

D ¼ w2
2 � w2

� �2þw2g22;

F ¼ 1 � w2 �
l1l2w2 w2

2 � w2
� �
D

;

G ¼ g1w þ l1l2g2w3

D
: ð9Þ
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Figure 2. Analytical (+) and numerical (}	}) frequency–response curves A(w), with the parameters
E0=0
2, g1=0
01, g2=0
1, l1=0
2, l2=0
4, b=0
95. (i) w2=1
0, (ii) w2=0
5.
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Using the Newton–Raphson algorithm, one finds A and B when the frequency w

is varied. The analytical and numerical frequency–response curves obtained are
provided in Figure 2 for A and in Figure 3 for B. The curves show antiresonance and
resonance peaks besides the hysteresis domains. Figure 4 shows the amplitude–response
curves of the Duffing oscillator for three fixed values of g1 in the case of the internal
resonance (w2=1) and the non-resonant case (w2=1). The curves show the jump
phenomena.
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Figure 3. Analytical (+) and numerical (}	}) frequency–response curves B(w). (i) w2=1
0, (ii) w2=0
5.
The other parameters are those of Figure 2.
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Figure 4. Amplitude–response curves A(E0). (i) w2=1
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5. The other parameters are those of
Figure 2 and w=1
5. with (a) g1=0
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3. STABILITY OF THE HARMONIC OSCILLATIONS

To study the stability of the oscillatory states, consider the following variational
equations of equations (5) around the oscillatory states given by equation (6)

d .xx þ g1d ’xx þ dx þ 3bx2
sdx þ l1d ’yy ¼ 0;

d .yy þ g2d ’yy þ w2
2dy � l2d ’xx ¼ 0; ð10Þ

where xs is the oscillatory state defined by equations (6).



LETTERS TO THE EDITOR 1259
The oscillatory states (xs, ys) are stable if dx and dy remain bounded as the time goes up.
The appropriate analytical tool to investigate the stability conditions of the oscillatory
states is the Floquet theory [1]. Now express dx and dy in the form

dx ¼ uðtÞexpð�eatÞ;
dy ¼ vðtÞexpð�ebtÞ; ð11Þ

where ea ¼ g1=w; eb ¼ g2=w; e ¼ eb � ea; t ¼ 2t=w:
Inserting equations (11) into equations (10), one obtains

d2u

dt2
þ ½d11 þ 2e11 cosð4t� 2fÞ�u þ d12 expð�etÞv

þ c1
dv

dt
expð�etÞ ¼ 0;

d2v

dt2
þ d21 expðetÞu þ d22v þ c2

du

dt
expðetÞ ¼ 0; ð12Þ

where the new parameters dij and e11 are given by

d11 ¼ � e2a þ
4

w2
þ 3bA2

w2
; d12 ¼

�2l1eb

w
;

d22 ¼ � e2b þ
2w2

2

w2
; d21 ¼

2eal2

w
; e11 ¼

3bA2

2w2
;

c1 ¼
2l1

w
; c2 ¼

�2l2

w
: ð13Þ

Following the Floquet theory [1], the small Hill determinant gives the following equation:

D ðea; ebÞ ¼ ½ðd11 þ e2aÞðd22 þ e2bÞ � ðd12 þ c1ebÞðd21 þ c2eaÞ�
	 f�ðd21 þ c2ðea þ 2iÞÞðd12 þ c1ðeb � 2iÞÞ
	 fðd11 þ ðea � 2iÞ2Þðd22 þ ðeb � 2iÞ2Þ � ðd12 þ c1ðeb � 2iÞÞðd21 þ c2ðea � 2iÞÞg
� ðd22 þ ðeb þ 2iÞ2Þðd11 þ ðea þ 2iÞ2Þðd12 þ c1ðeb � 2iÞÞðd21 þ c2ðea þ 2iÞÞþ
ðd22 þ ðeb � 2iÞ2Þðd22 þ ðeb þ 2iÞ2Þfðd11 þ ðea � 2iÞ2Þðd11 þ ðea þ 2iÞ2Þ � e211gg ¼ 0

ð14Þ
for the stability boundary of the harmonic state defined by equations (6).

From the equation, A2 can be extracted and then substituted into the equation satisfied
by A from the harmonic balance method (see equations (8)). This gives the stability
boundary as a function of the parameters of the electromechanical system. Figure 5 shows
a stability boundary in the (w, E0) plane both from the analytical treatment (equation (14))
and for the direct numerical checking of the stability boundary from the differential
equations. Good agreement is obtained between the analytical and the numerical results.

4. CHAOS CONTROL

The aim of this section is to use the flexibility of the chaotic regime to direct the system
to a chosen target trajectory. Let us use the canonical feedback controllers [9, 11, 12]. But
before proceeding to the control, first consider the behavior of the model as the amplitude
E0 of the excitation e(t) varies. As in the case of the hard Duffing equation (13), chaos
appears in the model only for large value of E0. Figure 6 shows a chaotic phase portrait
while Figure 7 shows a representative bifurcation diagram and the variation of the
corresponding Lyapunov exponent. Both curves are obtained by solving numerically, with
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the sixth order formulas of the Butcher family of the Runge–Kutta algorithm [14],
equation (5) and the corresponding variational equations, the Lyapunov exponent being
defined by

Lya ¼ lim
t!1

lnðdðtÞÞ
t

ð15Þ
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with

dðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2 þ dv2

x þ dy2 þ dv2
y

q
; ð16Þ

where dx, dvx, dy and dvy are the variations of x, ’xx; y and ’yy respectively. As it appears,
different types of bifurcations take place before the onset of chaos. As E0 increases from
zero, the amplitude of the symmetrical periodic oscillations increases until E0=4
67 where
the symmetrical behavior bifurcates into an asymmetrical oscillatory state. Then at
E0=6
15, a tiny multiperiodic transition appears and the system passes into another
periodic state. As E0 increases further, a period doubling transition takes place at
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E0=13
76. At E0=19
17, the period-2 orbit bifurcates to a period-4 orbit and the
period doubling cascade continues leading to a small chaotic window. This window
suddenly bifurcates into a period-3 orbit. Another set of period doubling sequences
leads to a larger chaotic domain for E0=20
65–25. But note that for E0=22
6–25, the
system shows a weak or transient chaos characterized by a sort of fractal nature of
the basin of attraction. In fact, in this domain, it is found that chaos appears only
for some initial conditions. This behavior manifests itself in Figure 7 (ii) by small
values of the Lyapunov exponent and in Figure 7 (i) by a sudden expansion of the
bifurcation diagram. This type of behavior is characteristic of the hard Duffing equation
as reported by Pezeshki and Dowell reference [15]. At the other side of the chaotic domain,
a reverse period doubling sequence takes place leading to a period-1 orbit (harmonic
oscillations).

Due to the presence of chaos in the electromechanical system, one would like to
suppress it or take advantage of the flexibility and the various infinite number of different
unstable orbits embedded in the chaotic attractor to tune the system to a desired target
regular orbit. The rest of this paper is devoted to this task. We follow the procedure of
Chen and Dong [9]. This has also been used recently in Reference [16] for chaos control in
electrostatic transducers. Introducing the new variables x1=x, x2 ¼ ’xx; x3=y, x4 ¼ ’yy;
equations (5) can then be rewritten as

’xxi ¼ giðt; x1; x2; x3; x4Þ: ð17Þ

Let ð %xx1; %xx2; %xx3; %xx4Þ be the periodic orbit that is being targetted, in the sense that for any
given e>0, there exists a time Te>0 such that

jxiðtÞ � %xxiðtÞj4e for all t5Te: ð18Þ

For this purpose, we use the conventional feedback controllers method to convert the
system into

’xxi ¼ giðt; x1; x2; x3; x4Þ �
X4

j¼1

Kijðxj � %xxjÞ; ð19Þ

where the Kij are the feedback gain matrix elements. We restrict ourselves to the case where
all Kij=0 except, K21 and K43 which are assumed to be strictly positive. Then equation (19)
becomes

’xx1 ¼ x2;

’xx2 ¼ �g1x2 � x1 � bx3
1 � l1x4 � K21ðx1 � %xx1Þ þ E0 cos wt;

’xx3 ¼ x4;

’xx4 ¼ �g2x4 � w2
2x3 þ l2x2 � K43ðx3 � %xx3Þ:

ð20Þ

The control should not introduce additional unstability into the system. It is therefore
required that all the roots of the characteristic equation derived from the Jacobian of
equations (20) have their real part less than zero. Using the Routh–Hurwitz criterium,
gives the condition

w2
2K21 þ K21K43 þ w2

2ð1 þ 3b %xx2
maxÞ þ K43ð1 þ 3b %xx2

maxÞ > 0; ð21Þ

where %xxmax is the amplitude of the targetting orbit of the first oscillator.
In view of applying the control strategy, we consider the system with the parameters of

Figure 7 and E0=22
0. In this state, this system has a chaotic behavior as it appears in the
phase portrait of Figure 6. Two sets of target trajectories have been considered. The first
one has the same frequency as the external excitation (period-1 targetting orbit) and is
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defined as

ð %xx1; %xx2; %xx3; %xx4Þ
¼ ð0:08 cos wt;�0:08w sin wt; 0:08 cos wt;�0:08w sin wtÞ: ð22Þ

The second set defined by

ð %xx1; %xx2; %xx3; %xx4Þ
¼ ð0:08 cos w0t;�0:08w0 sin w0t; 0:08 cos w0t;�0:08w0 sin w0tÞ ð23Þ
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and has the frequency w0=2w. The feedback matrix elements are K21=40 and K43=10.
The results of the control strategy is implemented in Figure 8 and show the efficiency of
the control strategy.

5. CONCLUSIONS

In this paper, we have considered the dynamics of an electromechanical system
consisting of an electrical Duffing oscillator coupled to a linear mechanical oscillator. The
amplitude and the stability boundaries of the harmonic behavior have been obtained
using, respectively, the harmonic balance method and the Floquet theory. Bifurcation
diagrams showing transitions from regular to chaotic motion have been drawn. The
canonical feedback controllers have been used to drive the electromechanical device from
a chaotic trajectory to a regular target orbit.

The study has mainly focussed on the harmonic oscillations. We think that an extension
of the analytic treatment to find sub- and superharmonic oscillations is an interesting task
which can be tackled using the multiple time scales method. Indeed, analyzing and
deriving the stability boundaries of each type of oscillations is interesting for the
technological exploitation of the devices. Moreover, the behavior of the electromechanical
system in the case of parameteric coupling is under consideration. The study of the device
with a self-sustained electrical component of the Van der Pol type in place of the Duffing
oscillator has been carried out recently [17].
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